
C-Programming

Prepared by
Dr. Ananya Phukan

Department of Physics
Mangaldai College

Mathematical Physics-I (Lab)

What is a program?

Introduction to C

C is a middle-level procedure oriented programming language developed by

Dennis Ritchie at AT’s & T bell laboratories in the year 1972 in USA.

Four stages of C program:
§ Editing: Writing the source code by using some IDE or editor
§ Preprocessing or libraries: Already available routines
§ compiling: translates or converts source to object code for a specific platform

source code -> object code
§ linking: resolves external references and produces the executable module

Basics of C Environment

• C systems consist of 3 parts
- Environment
- Language
- C Standard Library

• Development environment has 6 phases
- Edit
- Pre-processor
- Compile
- Link
- Load
- Execute

Basics of C Environment

Editor DiskPhase 1
Program edited in
Editor and stored
on disk

Preprocessor DiskPhase 2
Preprocessor
program processes
the code

Compiler DiskPhase 3
Creates object code
and stores on disk

Linker DiskPhase 4
Links object code
with libraries and
stores on disk

Basics of C Environment

LoaderPhase 5
Puts program in
memory

Primary memory

CPUPhase 6
Takes each instruction
and executes it storing
new data values

Primary memory

The C Character Set

Identifier

• Identifier refers to the name that is used to identify variables,
functions and so on.

Example:
 int a
 int b

 void sum()
 void fun()

a, b variables are identifiers

Functions sum() and fun() are identifiers

Data Type
• Data type specifies the size & type of values that can be stored in a

variable.
• Examples:
 int a= 10

Type

SecondaryPrimary
• int (2 byte)
• char (1 byte & -128 to +127)
• float (4 byte & 1.175 e-38 to 3.4e+38
• double (8 byte)
• void (0 byte)

• Array
• Pointer
• Structure
• Union

C Constants

§ Integer Constants
- It must have at least one digit with no decimal point.
- It can be either positive or negative
- The allowable range for integer constants is -32768 to 32767
 Eg: 440, -21, +9000

§ Real Constants
 - It must have at least one digit and a decimal point.
 - It can be either positive or negative
 - Range of real constants expressed in exponential form is -3.4 e38 to
 3.4 e38
 Eg: +330.50, -68.99, 2.1e4, -1.2e-2

A constant is a value or an identifier whose value cannot be altered in a program.

C Constants

§ Character Constants

 -A character constant is a single alphabet, a single digit or a single special

symbol enclosed within single inverted commas.

- The maximum length of a character constant can be 1 character.

Eg: ‘A’, ’h’, ‘5’, ‘=‘

C Variables

• Variable is the name of memory location where we store data.
• These locations can contain integer, real or character constants.
• The variable values are not always same, a new value can overwrite

the earlier value as shown below:

• The name of a variable can be composed of letters, digits, and the
underscore character. It must begin with either a letter or an
underscore. Upper and lowercase letters are distinct because C is
case-sensitive.

3

5
5x=3 x=5

C Variables

• Examples of type declaration statements:
 Eg: int si, x_hr;
 float fourier;
 char code;

Keyword

• Keywords are the words whose meaning has already been explained
to the C compiler.

#include <stdio.h>

/* My first C program which prints Hello World */

int main (int argc, char *argv[])
{
 printf ("Hello World!\n");
 return 0;
}

Preprocessor

Library command

main() means “start here”

Comments are good

Return 0 from main means our program
finished without errorsBrackets

define code blocks

Simple C Program

Simple C Program

Line 1: #include <stdio.h>
• As part of compilation, the C compiler runs a program called the C

preprocessor. The preprocessor is able to add and remove code from
your source file.

• In this case, the directive #include tells the preprocessor to include
code from the file stdio.h.

• This file contains declarations for functions that the program needs to
use. A declaration for the printf function is in this file.

Simple C Program

Line 2: void main()
• This statement declares the main function.
• A C program can contain many functions but must always have one

main function.
• A function is a self-contained module of code that can accomplish

some task.
• Functions are examined later.
• The "void" specifies the return type of main. In this case, nothing is

returned to the operating system.

Simple C Program

Line 3: {
• This opening bracket denotes the start of the program.

Simple C Program

Line 4: printf("Hello World From About\n");
• Printf is a function from a standard C library that is used to print

strings to the standard output, normally your screen.
• The compiler links code from these standard libraries to the code you

have written to produce the final executable.
• The "\n" is a special format modifier that tells the printf to put a line

feed at the end of the line.
• If there were another printf in this program, its string would print on

the next line.

Simple C Program

Line 5: }
• This closing bracket denotes the end of the program.

• All output to screen is achieved using readymade library functions.
One such function is printf.

• The general form of printf() function is,

printf ("<format string>", <list of variables>) ;

<format string> can contain,

%f for printing real values

%d for printing integer values

%c for printing character values

Compilation and Execution

• The C program is typed in a program called editor.

• After typing, it is converted to machine language (0’s and 1’s) before

the machine can execute it with the help of a compiler.

• Compiler vendors provide an Integrated Development Environment

(IDE) which consists of an Editor as well as the Compiler.

 Eg: Turbo C, Turbo C++, Visual C++, gcc etc.

Compilation Process

C program-2
/* Calculation of simple interest */
int main()
{

int p, n ;
float r, si ;
p = 1000 ;
n = 3 ;
r = 8.5 ;
si = p * n * r / 100 ; /* formula for simple interest */
printf ("%f" , si) ;

}

Receiving Input

• A user can supply values of variables through the keyboard during execution by using a function

called scanf().

• printf() outputs the values to the screen whereas scanf() receives them from the keyboard.

/* Calculation of simple interest */

int main()

{ int p, n ;
float r, si ;

printf ("Enter values of p, n, r") ;
scanf ("%d %d %f", &p, &n, &r) ;

si = p * n * r / 100 ;

printf ("%f" , si) ;
}

& is an ‘Address of’ operator. It gives the
location number used by the variable in
memory

Type Conversion in Assignments

• It may so happen that the type of the expression and the type of the
variable on the left-hand side of the assignment operator may not be
same. In such a case the value of the expression is promoted
or demoted depending on the type of the variable on left-hand side
of =.

• Example: int i;
i=3.5;

float b;
b=30;

Since i is an integer, the value of i that is stored is 3.
Float is converted to integer.

Since b is a float, the value of b that is stored is
 30.00000.
Integer is converted to float.

C Instructions
• There are basically three types of instructions in C:
 (a) Type Declaration Instruction- To declare the type of variables

used in a C program.
Eg: int a; float rs; char name;

int i=11, j=2; float a=10.5, b=2.3+1.1*3.44;

(b) Arithmetic Instruction- To perform arithmetic operations
between constants and variables.

 Eg: int i; float j, k, l, m, n;
 i=567; j=0.00234;
 k=l*m/n+2.3*5/2;

C Instructions

(c) Control Instruction- To control the sequence of execution of various
statements in a C program. There are four types of control instructions
in C.
 - Sequence Control Instruction
 - Selection or Decision Control Instruction
 - Repetition or Loop Control Instruction
 - Case Control Instruction

Operator
• Operator is a symbol that tells the compiler to perform mathematical and logical task.

• Types of operator:

1. Arithmetic operator (+, -, *, ÷, %)

2. Relational operator (<, >, <=, >=, ==,!=)

3. Logical operator (&&,!)

4. Increment / Decrement (++,--)

 - pre-increment/pre-decrement (++a,--a)

 - post-increment/post-decrement (a++,a--)

5. Ternary operator (?:)

6. Assignment operator (=)

Precedence order

• Highest to lowest
1. ()
2. *, /, %
3. +, -

Example

Algebra:
 z = pr%q+w/x-y

C:
 z = p * r % q + w / x – y ;

Precedence:
 1 2 4 3 5

Example

Algebra:
 a(b+c)+ c(d+e)

C:
 a * (b + c) + c * (d + e) ;

Precedence:
 3 1 5 4 2

Decision Control in C

• When different sets of instructions are executed in different
situations in a C program, then a decision control instruction is used
by using:

(a) if statement
(b) if-else statement
(c) Conditional operators

The if statement

• The general form of if statement looks like:

if (this condition is true)
 execute this statement;

Example (if statement)

The if-else statement

Example: In a company an employee is paid as under:
If his basic salary is less than Rs. 1500, then HRA = 10% of basic salary
and DA = 90% of basic salary. If his salary is either equal to or above Rs.
1500, then HRA = Rs. 500 and DA = 98% of basic salary. If the
employee's salary is input through the keyboard write a program to
find his gross salary.

Logical Operators

• C allows usage of three logical operators, namely,
 && - AND
 || - OR
 ! – NOT
• The operators && and ||, allow two or more conditions to be

combined in an if statement.

Example (Logical operators in if statement)
Q. The marks obtained by a student in 5 different subjects are input
through the keyboard. The student gets a division as per the following
rules:
Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail
Write a program to calculate the division obtained by the student.

Two ways to write the program:
1. With Nested if-else statement.
2. With Logical operators.

&& and || operators:

• The && and || are useful in the following programming situations:
(a) When it is to be tested whether a value falls within a particular

range or not.
(b) When after testing several conditions the outcome is only one of

the two answers (This problem is often called yes/no problem).

The ! (NOT) Operator

• This operator reverses the result of the expression it operates on. For
example, if the expression evaluates to a non-zero value, then
applying ! operator to it results into a 0.

 Eg: ! (y<10)
This means “not y less than 10”. In other words, if y is less than 10, the
expression will be false, since (y < 10) is true. We can express the
same condition as (y >= 10).

Hierarchy of Operators Revisited

The Conditional Operators

• The conditional operators ? and : are called ternary operators since
they take three arguments. They form a kind of foreshortened if-then-
else. Their general form is:

 expression 1 ? expression 2 : expression 3
This expression says that,
“if expression 1 is true, then the value returned will be expression 2,
otherwise the value returned will be expression 3”.

Example of conditional operators
1. int x, y;
 scanf(“%d”, &x);
 y=(x>5?3:4);

This statement will store 3 in y if x is gtreater than 5, otherwise it will store 4
in y.

if (x>5)
 y=3;
else
 y=4

2. char a;
 int y;
 scanf(“%c”,&a)
y=(a>=65 && a<=90 ? 1 :0);

1 would be assigned to y if a>=65
&& a<=90 evaluates to true,
otherwise 0 would be assigned

3. Apart from arithmetic statements, conditional operators are used as
shown below:
 eg: int i;
 scanf(“%d”, &i);
 (i==1 ? printf(“Amit”) : printf(“Prakash”));

 eg: char a=‘z’;
 printf(“%c”,(a>=‘a’ ? a : ‘!’));

4. The conditional operators can be nested as shown below:
 int big, a, b, c;
 big = (a>b ? (a>c?3:4):(b>c?6:8));

The Loop Control Structure
• When some portion of a program is repeated for a specified number

of times or performed until a particular condition is being satisfied,
then this repetitive operation is done through a loop control
instruction.

• Three methods to repeat a part of a program. They are:
 (a) Using a for statement
 (b) Using a while statement
 (c) Using a do-while statement

The while loop
• Calculation of simple interest for 3 sets of p, n and r.

 int main()
 { int p, n, count;
 float r, si;
 count =1;
 while (count<=3)
 { printf (“Enter the values of p, n and r”);
 scanf(“%d %d %f”, &p, &n, &r);
 si = p*n*r/100;
 count = count +1;
 }
 }

Initialise loop counter;
while (test loop counter using a condition)
{
 do this;
 and this;
 increment loop counter;
}

while loop…
• The statements within the while loop would keep on getting executed till

the condition being tested remain true. When the condition becomes false,
the control passes to the first statement that follows the body of the while
loop.

• Expressions are also used in place of the condition. The statements within
the loop get executed as long as the expression evaluates to a non-zero
value.

• The condition being tested may use relational or logical operators.
 while(i<=10), while(i>=10&&j<=15), while(j>10&&(b<15||c<20))

while loop…

• We can even decrement the loop counter and still manage to get the
body of the loop executed repeatedly.

while loop…

• The statements within the loop may be a single line or a block of
statements.

• The while must test a condition that will eventually become false,
otherwise the loop would be executed forever, indefinitely.

Indefinite loop, since i
remains equal to 1 forever

Correct form

while loop…
• A loop counter can be a float also.
 Example:
 int main
 {
 float a=10.0;
 while (a<=10.5)
 {
 printf(“Rose is red”);
 a=a+0.1;
 }
 }

Consider a problem where numbers from 1 to 10 are to be printed on the screen.

The for Loop

• The general form of for statement is :

 for (initialise counter ; test counter ; increment counter)
 {
 do this;
 and this;
 and this;
 }

The for Loop

for (i = 10 ; i ; i --)
printf ("%d", i) ;

for (i < 4 ; j = 5 ; j = 0)
printf ("%d", i) ;

for (i = 1; i <=10 ; printf ("%d",i++) ;

for (scanf ("%d", &i) ; i <= 10 ; i++)
printf ("%d", i) ;

The break statement

We often come across situations where we want to jump out of a loop

instantly, without waiting to get back to the conditional test. The

keyword break allows us to do this. When break is encountered inside

any loop, control automatically passes to the first statement after the

loop. A break is usually associated with an if.

The continue Statement

In some programming situations we want to take the control to the

beginning of the loop, bypassing the statements inside the loop, which

have not yet been executed. The keyword continue allows us to do this.

When continue is encountered inside any loop, control automatically

passes to the beginning of the loop.

A continue is usually associated with an if.

The do-while loop

The do-while loop looks like:

 do
 {
 this;
 and this;
 and this;
 } while(this condition is true);

Difference between while and do-while

• This difference is the place where the condition is tested. The while tests

the condition before executing any of the statements within the while

loop. As against this, the do-while tests the condition after having executed

the statements within the loop.

• This means that do-while would execute its statements at least once, even

if the condition fails for the first time. The while, on the other hand will not

execute its statements if the condition fails for the first time.

Do-while loop

• break and continue are used with do-while just as they would be in a while or a

for loop. A break takes you out of the do-while bypassing the conditional test. A

continue sends you straight to the test at the end of the loop.

Case Control Structure

• The control statement that allows us to make a decision from the number of

choices is called a switch, or more correctly a switch-case-default, since these

three keywords go together to make up the control statement.

• It appears as:

Switch Case Example

Switch Case Example using break

• It is not necessary to arrange the cases in ascending order always. You can put the
cases in any order you please.
• Character values are also allowed to use in case and switch.

• At times we may want to execute a common set of statements for
multiple cases.

• Every statement in a switch must belong to some case or the other. If
a statement doesn’t belong to any case the compiler won’t report an
error. However, the statement would never get executed.

• If we have no default case, then the program simply falls through the
entire switch and continues with the next instruction (if any,) that
follows the closing brace of switch.

• All that we can have after the case is an int constant or a char
constant or an expression that evaluates to one of these constants.
Even a float is not allowed.

• We can check the value of any expression in a switch. Thus the
following switch statements are legal.

switch (i + j * k)
switch (23 + 45 % 4 * k)
switch (a < 4 && b > 7)

• Expressions can also be used in cases provided they are constant
expressions. Thus case 3 + 7 is correct, however, case a + b is
incorrect.

• The break statement when used in a switch takes the control outside
the switch. However, use of continue will not take the control to the
beginning of switch as one is likely to believe.

